Introduction

Kidney disease is a public health problem, with more than 750 million people diagnosed worldwide. In 2019, 13 million people lost their lives due to kidney failure, and nearly 17 million died from acute kidney injury every year [1-3]. Chronic kidney disease (CKD) is a challenge because it manifests with unspecific or no clinical symptoms; symptoms are detected only at more advanced stages [4,5]. The most frequent complications of this disease are cardiovascular disorders, mineral and bone imbalance, and progression of CKD [6].

Kidney diseases can be recognized by identifying an imbalance in markers such as amino acids, lipids, and nucleotides. These compounds can suggest that there is a problem, expediting proper treatment and thus reducing complications [7-9]. The main indicators of kidney injury are albuminuria (albumin to creatinine ratio ≥30 mg/g), urinary sediment abnormalities characteristic of tubular disease, electrolytic disorders, and reduced renal function (glomerular filtration rate [GFR] <60 mL/min/1.73 m²) [10-12].

Indicators of kidney injury are mainly detected through urine and venous blood samples. These samples must be refrigerated due to the instability of the compounds, which can undergo enzymatic degradation [13,14]. However, dried blood spots (DBS) have gained relevance and may especially benefit populations at risk of CKD [13,15]. DBS is advantageous for infants and el-
Markers of kidney function

The GFR, which describes the volume of plasma filtered from the glomerular capillaries into Bowman’s capsules per unit of time [20], is considered a sensitive and specific indicator of abnormal kidney function [21]. The gold standard for GFR measurement is determining the clearance of compounds filtered exclusively by the glomeruli. Exogenous markers, such as iohexol, inulin, and iothalamate, meet this criterion, but they are used only in specific situations (e.g., drug adjustment or kidney protocols) due to their cost and complexity [10].

In most circumstances, GFR is estimated using compounds eliminated by the kidneys (creatinine and cystatin C) based on mathematical equations to correct for biological variations [22,23]. Creatinine levels vary according to age, sex, metabolism, muscle mass, and nutritional status. Cystatin C seems to be less dependent on biological factors, but its levels may increase with glucocorticoid use and show poor agreement during pregnancy due to placental production [8,24,25].

Principles and applications of DBS methods

The first officially established tests to use dried whole blood samples on filter paper in the pre-analytical phase of laboratory testing were performed in 1963, with the discovery of an effective low-cost neonatal screening test to identify phenylketonuria [26]. The successful screening of this and other inborn errors of metabolism using DBS has led to its adaptation for a myriad of analytical parameters, such as drug monitoring, protein studies, and infectious disease management [14,27,28].

Table 1 summarizes the main applications of DBS in kidney diseases.

The filter paper method has advantages over conventional venipuncture, since blood collection is easy to perform, less invasive, and relatively painless [29,30]. The paper filter method minimizes the volume of blood taken from patients and may be performed without specialized structures [29]. Furthermore, it is better suited for clinical research and patients who must undergo numerous blood tests or who have damaged veins, as well as for infants and older people [29,31,32].

Determining biochemical parameters from blood samples requires a well-established quality control system [33]. Factors such as sample collection procedure, sample volume, spot quality, filter paper type, drying and storage methods, hematocrit, and the incorporation of internal standards are important parameters for good DBS performance and vary depending on the analyte [34–37].

Relevant factors in DBS methods

Sample collection

In the classic filter paper system, a few drops of whole blood (5–50 μL) are collected on a card by finger prick with a lancet [29]. At this stage, certain precautions are essential, such as thorough disinfection, discarding the first drop of blood, which may contain tissue fluid, completely filling in the card’s outlined circle, and drying the sample at room temperature [14,38]. In viability testing of home-collected DBS samples for creatinine analysis, blood adherence to the cards was high, but only 80% of the spots showed accurate saturation and were suitable for analysis [39].

Capillary blood collected by finger prick is a mixture of arterial blood, venous blood, and interstitial fluids. Biomarker concentrations in capillary blood collected in DBS should be different from those found in venous blood [35]. Lower concentrations of cystatin C were found in blood collected by finger prick than in venous blood [40]. GFR measured by iohexol clearance has proven reliable in venous samples and capillary blood spots, although the capillary method overestimated venous GFR by 7.2% [41]. Conversely, both venous sampling and finger stick sampling at 2-time points after iohexol infusion resulted

Table 1. Potential applications of dried blood spots in kidney disease

- Screening and monitoring GFR decline in high-risk patients for CKD progression.
- Drug monitoring or adjustment in patients using nephrotoxic drugs or having underlying kidney disease.
- Patients at high risk for CKD who need multiple blood sampling at home (e.g., underlying diabetes mellitus and infants or elderly patients).

GFR, glomerular filtration rate; CKD, chronic kidney disease.
in an acceptably accurate GFR measurement [42]. Variability in creatinine levels between capillary and venous blood samples was compared using the gold standard method, isotope dilution mass spectrometry, which reinforced the importance of using correction factors derived from validation studies to align the values obtained through each method [43].

Filter paper
The filter paper type may affect the homogeneity and behavior of blood spreading, as well as compound stability and recovery [35,44]. The main types of filter paper are made of cellulose (Whatman, GE Healthcare and Ahlstrom, Perkin-Elmer) or glass microfiber (Agilent Bond Elut DMS and Sartorius) [29,38].

Cellulose-based cards may contain additives, such as enzyme inhibitors or denaturing agents [35,38]. Whatman FTA DMPK-A cards are impregnated with radical inhibitors (sodium dodecyl sulfate, tris(hydroxymethyl) aminomethane) and can promote cell lysis and denature proteins on contact. Similarly, Whatman FTA DMPK-B cards are impregnated with chaotropic agents (guanidinium thiocyanate). Cotton-based cards, such as Whatman FTA DMPK-C, are not impregnated with stabilizing materials and are suitable for protein analysis, as are Whatman 903 and Ahlstrom 226 [33].

Due to the range of available filter cards, the European Bioanalysis Forum recommends fully validating DBS sampling methods for specific paper types [45,46]. Recommended validation parameters include drying conditions, storage stability, the effects of sample recovery, linearity, accuracy, and precision [46].

Hematocrit
Hematocrit variability is the main factor affecting the quality of DBS results [47]. Hematocrit reflects the relative volume of red blood cells and affects blood viscosity. High hematocrit results in low absorption into the card [31]. Human reference values vary according to biological parameters such as age, sex, nutritional status, race, pathological conditions, and pregnancy, in addition to extrinsic factors, such as altitude and smoking [47]. Mathematical equations to correct these variations have been determined based on the patient’s baseline value or reference values for men and women [34]. Using computer systems to apply specific correction factors based on demographic data may help correct the impact of hematocrit on DBS measurements and achieve accurate analytical results. However, for precision, many sources of random errors (pipettes, volumetric flasks, detector, extraction procedure) must be accounted for [47].

The effect of hematocrit depends on the analyte of interest, and different results may be obtained according to its physical and chemical properties [48,49]. This effect can be measured either directly or indirectly through endogenous compounds such as sphingomyelin and potassium [47,50]. Incorporating internal standards, in association with accurate volume sampling, whole-spot extraction, and automated direct elution techniques has been shown to minimize the effect of hematocrit and thus improve reliability [51,52].

In studies involving individuals with abnormal hematocrit levels, DBS sampling proved unsuitable for iothalamate analysis [53]. Low hematocrit also significantly influenced creatinine analysis (deviation of 15%), and correction with endogenous compounds (potassium) was suggested [50]. Conversely, some studies reported that hematocrit’s effects on precision were within acceptable limits [32,54,55].

Applicability of the DBS technique in nephrology

Measurement of endogenous markers

Using DBS to quantify endogenous markers of kidney function has mainly occurred in the last decade (Table 2) [13,34,40,43,56-63]. A strong correlation was found between conventionally obtained venous blood samples and those collected through DBS [43,57,58]. Using the reference method, creatinine quantification in DBS samples showed good accuracy [58]. Nevertheless, only Dalton et al. [43] compared creatinine levels in whole capillary DBS samples (n=66) using isotope dilution mass spectrometry.

One observed advantage of DBS is the stability of compounds. Creatinine showed 7-day stability at 32 °C in blood collected on Whatman FTA DMPK-C cards [32]. Quraishi et al. [56] also reported that creatine is stable for up to 90 days between 4 °C and 37 °C in serum samples stored on filter discs. Similarly, DBS urea concentrations were stable for up to 120 days at 4 °C and for 90 days at 37 °C [63]. However, cystatin C values decreased when shipping times exceeded 8 days (n=3,149) [34].

Measurement of exogenous markers

To determine the GFR through the clearance of exogenous compounds, blood must be collected several times over specific periods [64]. The filter paper method could simplify this process and be more tolerable in special populations, such as children [42]. Table 3 shows the main studies that have as-
Table 2. Studies involving measurement of endogenous biomarkers of kidney function through DBS samples

<table>
<thead>
<tr>
<th>Author</th>
<th>Collection method</th>
<th>Sample size</th>
<th>Analytical technique</th>
<th>Storage and quality control</th>
<th>Sample (range or mean ±SD)</th>
<th>Assessment of agreement/performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quraishi [56]</td>
<td>VB</td>
<td>60</td>
<td>Colorimetric assay (Jaffé)</td>
<td>37 °C and 4 °C for 15–90 day</td>
<td>Creatinine range: 0.5–33 mg/dL</td>
<td>R=0.94, ICC=0.93</td>
</tr>
<tr>
<td>Abraham [57]</td>
<td>VB</td>
<td>15</td>
<td>Enzymatic assay</td>
<td>4 °C for 7 day</td>
<td>DBS: 1.39±0.46 mg/dL</td>
<td>R=0.91, ICC=0.92</td>
</tr>
<tr>
<td>Silva [13]</td>
<td>VB, CB</td>
<td>106</td>
<td>Colorimetric(Jaffé) assay</td>
<td>Not reported</td>
<td>Adult: 57±12 yr</td>
<td>R=0.48, Mean difference BA (LA): 0 (0.68 to −0.55)</td>
</tr>
<tr>
<td>Nakano [58]</td>
<td>VB</td>
<td>100</td>
<td>MS/MS</td>
<td>Not reported</td>
<td>Pediatric: 79 yr</td>
<td>Creatinine: 0.12–12 mg/dL</td>
</tr>
<tr>
<td>Bachini [59]</td>
<td>CB</td>
<td>9</td>
<td>FIA-MS</td>
<td>Not reported</td>
<td>Olympic athletes</td>
<td>CV=10.7%, ICC=0.57</td>
</tr>
<tr>
<td>Dalton [43]</td>
<td>VB, CB</td>
<td>66</td>
<td>ID-LCMS</td>
<td>−80 °C Standard 914a</td>
<td>Adult: 24–88 yr</td>
<td>Sensitivity: 100%</td>
</tr>
<tr>
<td>Sham [60]</td>
<td>VB</td>
<td>3</td>
<td>LC-MS/MS</td>
<td>2–8 °C</td>
<td>Creatinine: 2.5–20 μg/mL</td>
<td>Precision: ±6.3%, recovery 88%–94%, R²>0.99</td>
</tr>
<tr>
<td>Vogl [40]</td>
<td>VB, CB</td>
<td>141</td>
<td>ELISA, Nephelometry</td>
<td>−70 °C Hematocrit</td>
<td>ELISA Intra-assay CV: 5.4%, Inter-assay CV: 7.4%</td>
<td>R=0.94</td>
</tr>
<tr>
<td>Crimmins [61]</td>
<td>VB</td>
<td>82</td>
<td>ELISA</td>
<td>−70 °C</td>
<td>Adult: >50 yr</td>
<td>Mean creatinin C: 0.75 (0.41–1.39)</td>
</tr>
<tr>
<td>Crimmins [34]</td>
<td>VB</td>
<td>3,149</td>
<td>ELISA</td>
<td>≥322 °C, time before freezing (0–2, 3, 4, 5, 6–7, and >8 day)</td>
<td>Adult: >50 yr</td>
<td>Mean cystatin C: 12 (0.5–92)</td>
</tr>
</tbody>
</table>

(Continued to the next page)
Table 2. Continued

<table>
<thead>
<tr>
<th>Author</th>
<th>Collection method</th>
<th>Sample size</th>
<th>Analytical technique</th>
<th>Storage and quality control</th>
<th>Sample (range or mean±SD)</th>
<th>Assessment of agreement/performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbe [62]</td>
<td>VB, CB</td>
<td>20</td>
<td>Enzymatic assay</td>
<td>Analysis: <7 day Hematocrit<sup>c</sup></td>
<td>CV: 6%</td>
<td>Venipuncture: R=0.99 Regression: DBS=107×urea−0.6 Capillary sample: R=0.99 Regression: DBS=107×urea+0.1</td>
</tr>
<tr>
<td>Quraishi [63]</td>
<td>VB</td>
<td>75</td>
<td>Enzymatic assay</td>
<td>120 day (4 °C) or 90 day (37 °C) Intra-assay CV=4.2%, Inter-assay CV=6.3%</td>
<td>R=0.97, ICC=0.96</td>
<td></td>
</tr>
</tbody>
</table>

DBS, dried blood spots; SD, standard deviation; VB, venous blood; R, Pearson correlation coefficient; ICC, intraclass correlation coefficient; CB, capillary blood; BA (LA), Bland-Altman and limits of agreement; GFR, glomerular filtration rate; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; MS/MS, tandem mass spectrometry; CV, coefficient of variation; FIA-MS, flow injection analysis-mass spectrometry; ID-LCMS, isotope dilution-liquid chromatography/mass spectrometry; LC, liquid chromatography; PSI, paper spray ionization; ELISA, enzyme-linked immunosorbent assay.

^aLowest influence or undefined variations in the assessed parameters. ^bPresence or ^cabsence of statistical differences in biomarker concentrations according to variations in the assessed parameters.
organ rejection due to treatment nonadherence among transplant recipients make it essential to search for a simpler and less invasive method of drug therapy monitoring [78].

Final considerations

Although the early detection of kidney disease through simple and accurate identification of biomarkers is essential, it has been explored by few studies. The studies in this review found DBS to be a promising alternative for quantifying the main biomarkers of kidney diseases, but sources of variability should be considered separately for each analyte. Practical applications should follow strict validation protocols that contain information about sample type, card type, volume, temperature,
Table 4. Studies that simultaneously measured creatinine and medication clearance through DBS samples

<table>
<thead>
<tr>
<th>Author</th>
<th>Assessed medication</th>
<th>Collection method</th>
<th>Sample size</th>
<th>Analytical technique</th>
<th>Storage and quality control</th>
<th>Study population (yr)</th>
<th>Calibration and performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scherf-Clavel [74,76]</td>
<td>Metformin and sitagliptin</td>
<td>VB, CB</td>
<td>70</td>
<td>LC-MS/MS, enzymatic assay</td>
<td>Volume⁷</td>
<td>Mean±SD: 67±11</td>
<td>Limit of quantification Cr: 0.15 mg/dL, CF capillary vs. plasma = 0.916±0.088 R=0.944, mean BA deviation = 0.001 mg/dL</td>
</tr>
<tr>
<td>Mathew [77]</td>
<td>Tacrolimus</td>
<td>VB, CB Whatman 903</td>
<td>131</td>
<td>LC-MS/MS</td>
<td>Time: 5 day Temperature: ambient Hematocrit b)</td>
<td>Range: 30–49</td>
<td>Imprecision <12% and limits of clinical acceptance within 15% against the venous samples</td>
</tr>
<tr>
<td>Koop [78]</td>
<td>Tacrolimus</td>
<td>VB, CB FTA DMPK-A</td>
<td>21</td>
<td>LC-MS/MS</td>
<td>Time: 4wk Temperature: ambient Hematocrit b)</td>
<td>Mean±SD: 14±46</td>
<td>Limit of quantification Cr 0.01 mg/dL, accuracy 7.94% Intra- and inter-day precision: 3.48%–4.11%</td>
</tr>
<tr>
<td>Al-Uzri [39]</td>
<td>Tacrolimus</td>
<td>VB, CB</td>
<td>30 Subjects 21 cards</td>
<td>LC-MS/MS, colorimetric assay, RIA</td>
<td>Time: 4 wk up to 1 mo on a dissected card Temperature: ambient</td>
<td>Mean±SD: 13.6±5.4</td>
<td>Correlation between DBS vs. intravenous samples: tacrolimus: R²=0.81 Cr: R²=0.95</td>
</tr>
<tr>
<td>Francke [79]</td>
<td>Tacrolimus and cyclosporin</td>
<td>VB, CB</td>
<td>176</td>
<td>LC-MS/MS</td>
<td>Mean: 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veenhof [80]</td>
<td>Tacrolimus and cyclosporin</td>
<td>WB, CB Whatman DMPK-C</td>
<td>172 Subjects 210 cards</td>
<td>LC-MS/MS, enzymatic creatinine assay</td>
<td>1–7 day at room temperature after: −20 °C Hematocrit b)</td>
<td>Mean±SD: 55±14</td>
<td>Correlation between DBS vs. intravenous samples Mean serum Cr: 149 µmol/L (n=199), R²=0.97, y=0.73x–1.55 BA bias of −21 µmol/L (95% CI, −37 to −05) BA=[Cr serum µmol/L]−[DBS]0.73 Mean serum tacrolimus 71 µg/L (n=106), R²=0.93, y=10x–0.23, BA bias of −0.28 µg/L (95% CI, −0.45 to −0.12) Mean serum cyclosporine A 109 µg/L (n=61), R²=0.93, y=0.99x–1.86</td>
</tr>
<tr>
<td>Koster [32]</td>
<td>Tacrolimus, sirolimus, everolimus, and cyclosporin</td>
<td>VB, FTA DMPK-C</td>
<td>50</td>
<td>LC-MS/MS, enzymatic assay</td>
<td>32 °C for 1wk, −20 °C for 29 wk Volume⁷</td>
<td>Not available</td>
<td>Range for Cr: 7-point calibration curve (120–480 µmol/L), 1-point calibration curve (116–7000 µmol/L), 8-point calibration curve (1–400 µmol/L) Precision and accuracy (all validations): maximum CV of 140% and maximum bias of −5.9%</td>
</tr>
<tr>
<td>Scribel [54]</td>
<td>Vancomycin</td>
<td>VB, CB Whatman 903</td>
<td>29 Subjects 54 Samples</td>
<td>LC-MS/MS</td>
<td>22 °C and 45 °C for 2 wk Hematocrit b)</td>
<td>Age: >18yr</td>
<td>Cr serum to DBS concentration ratio: 0.8–1.28; R=0.96 Correlation between DBS vs intravenous samples: Vancomycin: R²=0.89 (n=54) DBS capillary blood Vancomycin: R²=0.93 (n=19) DBS venous blood Cr: R²=0.95 (n=54)</td>
</tr>
</tbody>
</table>

DBS, dried blood spots; VB, venous blood; CB, capillary blood; LC, liquid chromatography; MS/MS, tandem mass spectrometry; SD, standard deviation; Cr, creatinine; CF, correction factor; R, Pearson correlation coefficient; BA, Bland-Altman; RIA, radioimmunoassay; CI, confidence interval; CV, coefficient of variation.

⁷Absence of differences in marker concentrations according to variations in the assessed parameters.⁸Lowest influence on the assessed parameters.⁹Concentration corrected according to a mathematical equation.
humidity, and hematocrit parameters. Moreover, the assessment should include control subjects to ensure quality. Finally, future research should include expressive samples of patients at different stages of kidney disease and report information on clinical parameters.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Funding

None.

Author contributions

All the work was done by CN and VS.

References

